THE RIEMANN DELTA INTEGRAL ON TIME SCALES

Jae Myung Park*, Deok Ho Lee**, Ju Han Yoon***, Young Kuk Kim****, and Jong Tae Lim****

ABSTRACT. In this paper, we define the extension $f^*:[a,b]\to\mathbb{R}$ of a function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ for a time scale \mathbb{T} and show that f is Riemann delta integrable on $[a,b]_{\mathbb{T}}$ if and only if f^* is Riemann integrable on [a,b].

1. Introduction and preliminaries

Let \mathbb{T} be a time scale, a < b be points in \mathbb{T} , and $[a, b]_{\mathbb{T}}$ be the closed interval in \mathbb{T} . A partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ of $[a, b]_{\mathbb{T}}$ is a collection of tagged intervals such that

$$a = t_0 < t_1 < \dots < t_n = b, \quad t_i \in \mathbb{T} \text{ for each } i = 1, 2, \dots, n,$$

and ξ_i is an arbitrary point on $[t_{i-1}, t_i)_{\mathbb{T}}$.

Let f be a real-valued bounded function on $[a,b]_{\mathbb{T}}$. Let $M_i = \sup\{f(t) : t \in [t_{i-1},t_i)_{\mathbb{T}}\}$ and $m_i = \inf\{f(t) : t \in [t_{i-1},t_i)_{\mathbb{T}}\}$. The upper Δ -sum $\overline{S}_{\mathcal{P}}(f)$ and the lower Δ -sum $\underline{S}_{\mathcal{P}}(f)$ of f with respect to \mathcal{P} are defined by

$$\overline{S}_{\mathcal{P}}(f) = \sum_{i=1}^{n} M_i(t_i - t_{i-1}), \quad \underline{S}_{\mathcal{P}}(f) = \sum_{i=1}^{n} m_i(t_i - t_{i-1}).$$

Let $\{(a_k, b_k)\}_{k=1}^{\infty}$ be the sequence of intervals contiguous to $[a, b]_{\mathbb{T}}$ in [a, b].

For a function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$, define the extension $f^*:[a,b]\to\mathbb{R}$ of f by

$$f^*(t) = \begin{cases} f(a_k) & \text{if } t \in (a_k, b_k) \text{ for some } k \\ f(t) & \text{if } t \in [a, b]_{\mathbb{T}}. \end{cases}$$

Received April 07, 2014; Accepted April 16, 2014.

2010 Mathematics Subject Classification: Primary 26A39; Secondary 26E70.

Key words and phrases: time scales, Riemann delta integral, δ -partition.

Correspondence should be addressed to Young Kuk Kim, ykkim@dragon.seo-won ac kr

It is well-known [7] that $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is McShane delta integrable on $[a,b]_{\mathbb{T}}$ if and only if $f^*:[a,b]\to\mathbb{R}$ is McShane integrable on [a,b].

In this paper, we consider the Riemann delta integral and show that a function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is Riemann delta integrable on $[a,b]_{\mathbb{T}}$ if and only if $f^*:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b].

2. The Riemann delta integral

DEFINITION 2.1. For given $\delta > 0$, a partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ is a δ -partition of $[a, b]_{\mathbb{T}}$ if for each $i \in \{1, 2, \dots, n\}$ either $t_i - t_{i-1} \leq \delta$ or $t_i - t_{i-1} > \delta$ and $\sigma(t_{i-1}) = t_i$, where $\sigma(t) = \inf\{s \in T : s > t\}$.

DEFINITION 2.2. A bounded function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is Riemann delta integrable (or R_{Δ} -integrable) on $[a,b]_{\mathbb{T}}$ if there exists a number A such that for each $\epsilon>0$ there exists $\delta>0$ such that

$$\left| \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - A \right| < \epsilon$$

for every δ -partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ of $[a, b]_{\mathbb{T}}$. The number A is called the Riemann delta integral of f on $[a, b]_{\mathbb{T}}$ and we write

$$A = (R_{\Delta}) \int_{a}^{b} f.$$

The following theorem gives a Cauchy criterion for R_{Δ} -integrability.

THEOREM 2.3. [3] A bounded function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ if and only if for each $\epsilon>0$ there exists a partition \mathcal{P} of $[a,b]_{\mathbb{T}}$ such that $\overline{S}_{\mathcal{P}}(f)-\underline{S}_{\mathcal{P}}(f)<\epsilon$.

Let $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ and $\mathcal{Q} = \{(\zeta_j, [x_{j-1}, x_j])\}_{j=1}^m$ be two partitions of [a, b](or $[a, b]_{\mathbb{T}}$). If $\{t_0, t_1, \dots, t_n\} \subset \{x_0, x_1, \dots, x_m\}$, then we say that \mathcal{Q} is a refinement of \mathcal{P} and we denote $\mathcal{Q} \geq \mathcal{P}$.

Recall that $f:[a,b] \to \mathbb{R}$ is Riemann integrable on [a,b] with value A if for each $\epsilon > 0$ there exists a partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}$ of [a,b] such that

$$\left| \sum_{j} f(\zeta_{j})(x_{j} - x_{j-1}) - A \right| < \epsilon$$

for every refinement $Q = \{(\zeta_i, [x_{j-1}, x_j])\}$ of \mathcal{P} .

THEOREM 2.4. A bounded function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ if and only if $f^*:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b]. In that case, $(R)\int_a^b f^*=(R_{\Delta})\int_a^b f$.

Proof. Let $f:[a,b]_{\mathbb{T}} \to \mathbb{R}$ be R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ and let $\epsilon > 0$. Then there exists a partition $\mathcal{P}_0 = \{(\xi_j^0, [t_{j-1}^0, t_j^0])\}_{j=1}^m$ of $[a,b]_{\mathbb{T}}$ such that

(2.1)
$$\left| \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}) - (R_{\Delta}) \int_a^b f \right| < \epsilon$$

for every partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n \geq \mathcal{P}_0 \text{ of } [a, b]_{\mathbb{T}}.$

Assume that $\mathcal{P}' = \{(\xi_i', [t_{i-1}', t_i'])\}_{i=1}^n$ is a partition of [a, b] with $\mathcal{P}' \geq \mathcal{P}_0$, where we regard \mathcal{P}_0 as a partition of [a, b].

If $i \leq n$, then there is a unique $j \leq m$ such that $[t'_{i-1}, t'_i] \subseteq [t^0_{j-1}, t^0_j]$ and there is a $\xi_i'' \in [t^0_{j-1}, t^0_j]_{\mathbb{T}}$ with $f^*(\xi_i') = f(\xi_i'')$. For each $j \leq m$, there are $i_{1j}, i_{2j} \leq n$ such that $[t'_{i_{1j}-1}, t'_{i_{1j}}], [t'_{i_{2j}-1}, t'_{i_{2j}}] \subseteq [t^0_{j-1}, t^0_j]$ and

$$f(\xi_{i_{1j}}^{''}) \!=\! \min_{[t_{i-1}',t_i']\subseteq [t_{j-1}^0,t_j^0]} \!\! f(\xi_{i_{2j}}^{''}) \! =\! \max_{[t_{i-1}',t_i']\subseteq [t_{j-1}^0,t_j^0]} \!\! f(\xi_i^{''}).$$

By (2.1), we have

$$\sum_{i=1}^{n} f^{*}(\xi_{i}^{'})(t_{i}^{'} - t_{i-1}^{'})$$

$$= \sum_{j=1}^{m} \sum_{[t_{i-1}^{'}, t_{i}^{'}] \subseteq [t_{j-1}^{0}, t_{j}^{0}]} f(\xi_{i}^{''})(t_{i}^{'} - t_{i-1}^{'})$$

$$= \sum_{j=1}^{m} \Big(\sum_{[t_{i-1}^{'}, t_{i}^{'}] \subseteq [t_{j-1}^{0}, t_{j}^{0}]} f(\xi_{i}^{''}) \frac{t_{i}^{'} - t_{i-1}^{'}}{t_{j}^{0} - t_{j-1}^{0}} \Big) (t_{j}^{0} - t_{j-1}^{0})$$

$$\leq \sum_{j=1}^{m} f(\xi_{i2j}^{''})(t_{j}^{0} - t_{j-1}^{0})$$

$$< \sum_{j=1}^{m} f(\xi_{j}^{0})(t_{j}^{0} - t_{j-1}^{0}) + 2\epsilon.$$

Similarly, we have

(2.3)
$$\sum_{i=1}^{n} f^*(\xi_i')(t_i' - t_{i-1}') > \sum_{j=1}^{m} f(\xi_j^0)(t_j^0 - t_{j-1}^0) - 2\epsilon.$$

From (2.1), (2.2), (2.3) we have

$$\left| \sum_{i=1}^{n} f^{*}(\xi_{i}')(t_{i}' - t_{i-1}') - (R_{\Delta}) \int_{a}^{b} f \right|$$

$$\leq \left| \sum_{i=1}^{n} f^{*}(\xi_{i}')(t_{i}' - t_{i-1}') - \sum_{j=1}^{m} f(\xi_{j}^{0})(t_{j}^{0} - t_{j-1}^{0}) \right|$$

$$+ \left| \sum_{j=1}^{m} f(\xi_{j}^{0})(t_{j}^{0} - t_{j-1}^{0}) - (R_{\Delta}) \int_{a}^{b} f \right|$$

$$\leq 2\epsilon + \epsilon = 3\epsilon.$$

Thus f^* is Riemann integrable on [a,b] and $\int_a^b f^* = (R_\Delta) \int_a^b f$. Conversely, suppose that $f^* : [a,b] \to \mathbb{R}$ is Riemann integrable on [a,b]. Let $\epsilon > 0$. Then there exists a partition $\mathcal{P} = \{[x_i,y_i]\}_{i=1}^n$ of [a,b] such that

$$\overline{S}_{\mathcal{P}}(f^*) - \underline{S}_{\mathcal{P}}(f^*) < \epsilon.$$

Let $\{(a_k, b_k)\}$ be the sequence of intervals contiguous to $[a, b]_{\mathbb{T}}$ in [a, b]. Put

$$A = \{i | [x_i, y_i] \subset [a_k, b_k] \text{ for some } k \in \mathbb{N}, i = 1, 2, \dots, n\},\$$

 $B = \{1, 2, \dots, n\} - A.$

We see that $[x_i, y_i]_{\mathbb{T}} \neq \emptyset$ for each $i \in B$. Put

$$s_i = \inf[x_i, y_i]_{\mathbb{T}}, \quad t_i = \sup[x_i, y_i]_{\mathbb{T}} \quad \text{for each } i \in B.$$

Put
$$B_1 = \{i \in B \mid x_i < s_i\}, B_2 = \{i \in B \mid t_i < y_i\}$$

$$B_3 = \{ i \in B \mid s_i < t_i \}.$$

Let
$$K = \{k \in \mathbb{N} \mid [x_i, y_i] \subset [a_k, b_k] \text{ for some } i \in A\}$$

$$\cup \left. \{k \in \mathbb{N} \mid [x_i, s_i] \subset [a_k, b_k] \right. \text{ for some } i \in B_1 \}$$

$$\cup \{k \in \mathbb{N} \mid [t_i, y_i] \subset [a_k, b_k] \text{ for some } i \in B_2\}.$$

Then the partition

$$\mathcal{P}' = \{ [x_i, y_i] \mid i \in A \} \cup \{ [x_i, s_i] \mid i \in B_1 \} \cup \{ [t_i, y_i] \mid i \in B_2 \}$$
$$\cup \{ [s_i, t_i] \mid i \in B_3 \}$$

is a refinement of \mathcal{P} . Hence, $\overline{S}_{\mathcal{P}'}(f^*) - \underline{S}_{\mathcal{P}'}(f^*) < \epsilon$.

Put $\mathcal{P}'' = \{ [s_i, t_i] \mid i \in B_3 \}, \mathcal{Q} = \{ [a_k, b_k] \mid k \in K \} \cup \mathcal{P}''.$

Then Q is a partition of $[a,b]_{\mathbb{T}}$ and

$$\overline{S}_{\mathcal{Q}}(f) - \underline{S}_{\mathcal{Q}}(f) = \overline{S}_{\mathcal{P}''}(f) - \underline{S}_{\mathcal{P}''}(f)
= \overline{S}_{\mathcal{P}'}(f^*) - \underline{S}_{\mathcal{P}'}(f^*) < \epsilon.$$

By Theorem 2.3, f is R_{Δ} -integrable on $[a, b]_{\mathbb{T}}$.

THEOREM 2.5. Let f be a bounded R_{Δ} -integrable function on $[a, b]_{\mathbb{T}}$. Then f is R_{Δ} -integrable on every subinterval $[c, d]_{\mathbb{T}}$ of $[a, b]_{\mathbb{T}}$.

Proof. Let f be a bounded R_{Δ} -integrable function on $[a,b]_{\mathbb{T}}$. By Theorem 2.4, $f^*:[a,b]\to\mathbb{R}$ is Riemann integrable on [a,b]. By the property of the Riemann integral, f^* is Riemann integrable on every subinterval $[c,d]\subset [a,b]$. By Theorem 2.4, f is R_{Δ} -integrable on every subinterval $[c,d]_{\mathbb{T}}\subset [a,b]_{\mathbb{T}}$.

THEOREM 2.6. Let f and g be R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ and α,β be real numbers. Then $\alpha f + \beta g$ is R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ and

$$(R_{\Delta}) \int_{a}^{b} (\alpha f + \beta g) = \alpha(R_{\Delta}) \int_{a}^{b} f + \beta(R_{\Delta}) \int_{a}^{b} g.$$

Proof. Let f and g be R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$. By Theorem 2.4, $\alpha f^* + \beta g^*$ is Riemann integrable on [a,b] and

$$(R) \int_{a}^{b} (\alpha f^* + \beta g^*) = \alpha (R) \int_{a}^{b} f^* + \beta (R) \int_{a}^{b} g^*.$$

Hence, $\alpha f + \beta g$ is R_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(R_{\Delta}) \int_{a}^{b} (\alpha f + \beta g) = \alpha (R_{\Delta}) \int_{a}^{b} f + \beta (R_{\Delta}) \int_{a}^{b} g.$$

THEOREM 2.7. Let f be a bounded function on $[a,b]_{\mathbb{T}}$ and let $c \in \mathbb{T}$ with a < c < b. If f is R_{Δ} -integrable on each of intervals $[a,c]_{\mathbb{T}}$ and $[c,b]_{\mathbb{T}}$, then f is R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ and

$$(R_{\Delta}) \int_{a}^{b} f = (R_{\Delta}) \int_{a}^{c} f + (R_{\Delta}) \int_{c}^{b} f.$$

Proof. If f is R_{Δ} —integrable on $[a, c]_{\mathbb{T}}$ and $[c, b]_{\mathbb{T}}$, then f^* is Riemann integrable on [a, c] and [c, b]. By the property of the Riemann integral, f^* is Riemann integrable on [a, b] and

$$(R) \int_{a}^{b} f^{*} = (R) \int_{a}^{c} f^{*} + (R) \int_{c}^{b} f^{*}.$$

By Theorem 2.4, f is R_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(R_{\Delta}) \int_{a}^{b} f = (R_{\Delta}) \int_{a}^{c} f + (R_{\Delta}) \int_{c}^{b} f.$$

THEOREM 2.8. Let $\{f_n\}$ be a sequence of R_{Δ} -integrable functions on $[a,b]_{\mathbb{T}}$ such that $f_n \to f$ uniformly on $[a,b]_{\mathbb{T}}$. Then f is R_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ and

$$(R_{\Delta})\int_{a}^{b} f = \lim_{n \to \infty} (R_{\Delta})\int_{a}^{b} f_{n}.$$

Proof. Let $\{f_n\}$ be a sequence of R_{Δ} -integrable functions on $[a,b]_{\mathbb{T}}$ such that $f_n \to f$ uniformly on $[a,b]_{\mathbb{T}}$. By Theorem 2.4, $\{f_n^*\}$ is a sequence of Riemann integrable functions on [a,b] such that $f_n^* \to f^*$ uniformly on [a,b].

By the property of Riemann integral, f^* is Riemann integrable on [a, b] and

$$(R) \int_{a}^{b} f^{*} = \lim_{n \to \infty} (R) \int_{a}^{b} f_{n}^{*}.$$

By Theorem 2.4, f is R_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(R_{\Delta})\int_{a}^{b} f = \lim_{n \to \infty} (R_{\Delta})\int_{a}^{b} f_{n}.$$

References

[1] R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22.

- [2] S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. Vol 16 (2006), no. 3, 77-98.
- [3] G. Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127.
- [4] G. Sh. Guseinov and B. Kaymakcalan, Basics of Riemann delta and nabla integration on time scales, J. Diff. Equ. Appl. 8 (2002), 1001-1027.
- [5] J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The Henstock and Henstock delta integrals, J. Chungcheong Math. Soc. 26 (2013), no. 2, 291-298.
- [6] J. M. Park, D. H. Lee, J. H. Yoon, Y. K. Kim, and J. T. Lim, The relation between Henstock integral and Henstock delta integral on time scales, J. Chungcheong Math. Soc. 26 (2013), no. 3, 625-630.
- [7] J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The relation between McShane integral and McShane delta integral, J. Chungcheong Math. Soc. 27 (2014), no. 1, 113-121.
- [8] A. Peterson and B. Thompson, Henstock-Kurzweil delta and nabla integral, J. Math. Anal. Appl. 323 (2006), 162-178.
- [9] C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Riemann Lebesque, Henstock-Kurzweil, and McShane, World Scientific, 2004.

[10] B. S. Thomson, *Henstock Kurzweil integtals on time scales*, PanAmerican Math J. **Vol 18** (2008), no. 1, 1-19.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea E-mail: parkjm@cnu.ac.kr

**

Department of Mathematics Education KongJu National University Kongju 314-701, Republic of Korea *E-mail*: dhlee@kongju.ac.kr

Department of Mathematics Education Chungbuk National University Chungju 360-763, Republic of Korea *E-mail*: yoonjh@cbnu.ac.kr

Department of Mathematics Education Seowon University Chungju 361-742, Republic of Korea *E-mail*: ykkim@dragon.seowon.ac.kr

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: shiniljt@gmail.com